Cleaning Up Fish Farms
Seeds of the Future
Keeping Bugs Away from Food
Poison Dart Frogs
Salamanders and Newts
A Fallout Feast for Crabs
Fishy Cleaners
Cannibal Crickets
Mosquito duets
Ear pain, weight gain
Honeybees do the wave
Chemistry and Materials
Popping to Perfection
A Framework for Growing Bone
Heaviest named element is official
Electronic Paper Turns a Page
Games with a Purpose
Music of the Future
Dinosaurs and Fossils
Message in a dinosaur's teeth
The Paleontologist and the Three Dinosaurs
Middle school science adventures
E Learning Jamaica
E Learning in Jamaica WIN PRIZES and try our Fun Animated Games
Results of GSAT are in schools this week
2014 GSAT Results for Jamaican Kids
A Grim Future for Some Killer Whales
Science loses out when ice caps melt
Hints of Life in Ancient Lava
Food Web Woes
Groundwater and the Water Cycle
Where rivers run uphill
Finding the Past
Prehistoric Trips to the Dentist
Big Woman of the Distant Past
Traces of Ancient Campfires
Pygmy Sharks
Great White Shark
Food and Nutrition
Symbols from the Stone Age
Eat Out, Eat Smart
Recipe for Health
GSAT English Rules
Finding Subjects and Verbs
Adjectives and Adverbs
GSAT Exam Preparation Jamaica
March 21-22, 2013: Over 43,000 students will take the GSAT Exam
Results of GSAT are in schools this week
Preparing for the GSAT Exam
GSAT Exams Jamaica Scholarships
Access denied - Disabled boy aces GSAT
42,000 students will sit for the GSAT Exam in two weeks
Results of GSAT are in schools this week
GSAT Mathematics
Setting a Prime Number Record
Monkeys Count
E Learning in Jamaica WIN PRIZES and try our Fun Animated Games
Human Body
Gut Germs to the Rescue
A Long Trek to Asia
Fighting Off Micro-Invader Epidemics
Choosing a Preschool: What to Consider
Children and Media
Raise a Lifelong Reader by Reading Aloud
Echoes of a Stretched Egg
Project Music
The Pressure of Scuba Diving
Assembling the Tree of Life
Fastest Plant on Earth
Nature's Alphabet
Gila Monsters
Black Mamba
Snapping Turtles
Space and Astronomy
Baby Star
Sun Flips Out to Flip-Flop
A Planet's Slim-Fast Plan
Technology and Engineering
Smart Windows
Searching for Alien Life
Crime Lab
The Parts of Speech
Problems with Prepositions
Countable and Uncountable Nouns
What is a Verb?
Reach for the Sky
Seen on the Science Fair Scene
Tinkering With the Basic Bike
Earth's Poles in Peril
Recipe for a Hurricane
Antarctica warms, which threatens penguins
Add your Article


Although sometimes called "white ants", termites only superficially resemble ants; the name is probably due to their similar size and social habits. Termites have biting mouthparts and their soft bodies are small, rarely over 10 mm in length. They typically inhabit dark nests and tunnels, only venturing out when the winged individuals emerge to leave their parent colony, when constructing shelter or, in the case of grass-eaters, when harvesting grass stems. The bodies of flying individuals are dark, while termites which remain in the nest are whitish with only their heads being lightly pigmented. The deciduous wings of termites are long and slender, in two pairs that are similarly sized and shaped. The wings are quickly shed after flight with a simple body flick when the swarming termites find a new nest site, pair up and dig in. The remnant of the wing is a distinct triangular scale. Swarm intelligence: As social insects, termites live in colonies that number from several hundred to several million individuals at maturity. They are a prime example of decentralised, self-organised systems using swarm intelligence and use this cooperation to exploit food sources and environments that could not be available to any single insect acting alone. A typical colony contains workers, soldiers, and reproductive individuals of both sexes, often containing several egg-laying queens. Classified to food: Termites are generally grouped according to their feeding behaviour. Thus the commonly used general groupings are: Subterranean, Soil-feeding, Drywood, Dampwood and Grass eating. Of these, subterraneans and drywoods are primarily responsible for damage to structures. Friends with Benefits: All termites eat cellulose in its various forms as plant fibre. Cellulose is a rich energy source (think of wood fires), but difficult to digest. Termites rely primarily upon symbiotic protozoa (metamonads) called trichonympha and other microbes in their gut to digest the cellulose for them, absorbing the end products for their own use. The gut protozoa in turn rely on symbiotic bacteria embedded on their surfaces to produce some of the necessary digestive enzymes. This relationship is one of the finest examples of mutualism among animals. Most so called "higher termites", especially in the Family Termitidae can produce their own cellulase enzymes. However, they still retain a rich gut fauna with bacteria dominant. Fungi farmers: Some species of termite practise farming! They maintain a 'garden' of specialized fungi, which are nourished by the excrement of the insects. When the fungi in turn are eaten, their spores pass undamaged through the guts of the termites, to complete the cycle by germinating in the fresh faecal pellets. Quite the builders: In some regions, notably arid tropical savannas, termites construct extremely large and elaborate mounds which house their colonies. These mounds can have very distinctive forms, such as those of the compass termite, which build tall wedge-shaped mounds with the long axis oriented approximately north-south. This orientation has been experimentally shown to ease the termites' workload in regulating the mound's internal temperature. Some mounds can reach heights of 6 meters, but most species build mounds of less than two meters. The structure of these mounds can be quite complex, arguably more complex than many human dwellings, providing thermal mass, solar collection, defence, atmospheric control, food storage, housing and areas for fungal agriculture. Eating everything: Because of their wood-eating habits, termites sometimes do great damage to buildings and other wooden structures. Their habit of remaining concealed often results in their presence being undetected until the timbers are severely damaged and exhibit surface changes. Once termites have entered a building they do not limit themselves just to wood, also damaging paper, cloth, carpets, and other plant or cellulose-based materials. Social structure and behaviour Queen: At maturity, a primary queen can lay several thousand eggs a day. In physogastric species, the queen adds an extra set of ovaries with each moult, resulting in a greatly distended abdomen and increased fecundity. The distended abdomen increases her size in some species to as much as 10 centimetres, hundreds of times the original size, effectively immobilizing her. In times where the queen must be moved to a new chamber it requires a group effort to move her whereby hundreds of workers are required to push her. The queen is widely believed to be a primary source of pheromones useful in colony integration. As a reward for attending workers a juice is secreted from the queen's posterior for the workers to drink. King: The king remains only slightly bigger than an average termite and continues to mate with the queen for life. This is especially unusual since ant societies have colonies with only a queen which mates once with the male and stores his gametes for life. Males in ant colonies die immediately after mating, unlike termite male alates which become kings and live with the queen. The alate caste, also referred to as the reproductive caste, are the only termites with well developed eyes. In some cases termite mounds have been opened to find multiple queens and kings in a single nest chamber. Immature alates still going through incomplete metamorphosis form a sub-caste in certain species of termites, functioning as supplementaries. Supplementaries have the ability to replace a dead primary reproductive, but this integration into primary reproductive status is rare. Workers: Worker termites undertake the labours of foraging, food storage, brood, nest maintenance and a portion of the defence effort in some species. Workers are the only caste in the colony with the ability to digest cellulouse in wood due to the presence of trichonympha in the digestive tract. They then regurgitate the digested cellulose to the other castes since only they have the mandibles to chew wood and the digestion required. This symbiosis is integral since without these microbes entire nests would starve. This weakness is sometimes used in pest control to destroy termites by killing the trichonympha chemically. Termite workers are blind due to undeveloped eyes. The workers are responsible for creating the nest walls using a combination of dung, wood chips and saliva. Some species have been known to create such durable walls that industrial machinery has been damaged in an attempt to break their tall mounds. Some African and Australian species have mounds that can tower above a man's height. The nest is designed by workers with special rooms for fungal gardens, brooding, water collection, reproductive chambers, and tunnel networks that effectively provide air conditioning. In some species the workers have additional symbiosis with insects known as termitophiles where juice is created for the termites and housing is provided for the termitophiles. This is similar to cow ants, which farm aphids for juice and provide a home for the aphid. Soldiers: The soldier caste has anatomical and behavioural specializations, primarily against ant attack. Many have jaws so enlarged that they cannot feed themselves, but instead, like juveniles, are fed by workers. The tropical Nasutus species have soldiers with the ability to exude noxious liquids through either a horn-like nozzle (nasus) or simple hole in the head (fontanelle). Many species are classified using the characteristics of the soldiers' heads, mandibles or nasus due to distinct differences with each species. Among the drywood termites, a soldier's enlarged (phragmotic) head can be used to block their narrow tunnels. Termite soldiers mostly require the aid of the nest to perform war duty since they have undeveloped eyes which are blind. They use their heads, nasus or mandibles to defend tunnels effectively. With a tunnel blocked so effectively it can rebuff attacks from many ants. Usually more soldiers stand by behind the initial soldier so once the first one falls another soldier will take his place. In cases where the intrusion is coming from a breach that is larger than the soldier's head, defense requires special formations where soldiers form a phalanx-like formation around the breach blindly biting at intruders or shooting toxic glue from the nasus. This formation involves self sacrifice because once the breach is repaired during fighting by the workers no return is provided causing the death of all the defenders. Termites undergo incomplete metamorphosis, with their freshly hatched young taking the form of tiny termites that grow without significant morphological changes. Some species of termite have been known to have small groups of extremely large soldiers (3*normal size). Though their purpose is unknown speculation indicates that they are an elite class that defends only the inner tunnels of the mound. This is the commonly accepted belief because their size would be of great use in the large interior tunnels. Even when provoked, these large soldier termites will not defend themselves but merely travel deeper into the mound.


Designed and Powered by™