Agriculture
Silk’s superpowers
Flush-Free Fertilizer
Chicken Eggs as Drug Factories
Amphibians
Poison Dart Frogs
Tree Frogs
Bullfrogs
Animals
A Grim Future for Some Killer Whales
Cacophony Acoustics
G-Tunes with a Message
Behavior
Baby Number Whizzes
Fish needs see-through head
Face values
Birds
Waterfowl
Carnivorous Birds
Finches
Chemistry and Materials
Scientist Profile: Wally Gilbert
Flytrap Machine
Popping to Perfection
Computers
Computers with Attitude
Earth from the inside out
It's a Small E-mail World After All
Dinosaurs and Fossils
The bug that may have killed a dinosaur
Meet the new dinos
Have shell, will travel
E Learning Jamaica
Results of GSAT are in schools this week
2014 GSAT Results for Jamaican Kids
E Learning in Jamaica WIN PRIZES and try our Fun Animated Games
Earth
Greener Diet
Distant Quake Changes Geyser Eruptions
Hot Summers, Wild Fires
Environment
What is groundwater
Giant snakes invading North America
Pumping Up Poison Ivy
Finding the Past
The Taming of the Cat
A Volcano's Deadly Ash
Early Maya Writing
Fish
Megamouth Sharks
Sharks
Bull Sharks
Food and Nutrition
Healing Honey
In Search of the Perfect French Fry
A Pepper Part that Burns Fat
GSAT English Rules
Who vs. That vs. Which
Adjectives and Adverbs
Finding Subjects and Verbs
GSAT Exam Preparation Jamaica
GSAT Exam Preparation
The Annual GSAT Scholarships
GSAT Scholarship
GSAT Exams Jamaica Scholarships
Results of GSAT are in schools this week
GSAT Practice Papers | GSAT Mathematics | Maths
GSAT stars reap scholarship glory
GSAT Mathematics
Math of the World
How a Venus Flytrap Snaps Shut
GSAT Mathematics Quiz, Teaching Math, teaching anxiety
Human Body
Cell Phone Tattlers
Remembering Facts and Feelings
Football Scrapes and Nasty Infections
Invertebrates
Scorpions
Nautiluses
Shrimps
Mammals
African Hippopotamus
Sun Bear
Pugs
Parents
What Not to Say to Emerging Readers
Raise a Lifelong Reader by Reading Aloud
The Surprising Meaning and Benefits of Nursery Rhymes
Physics
Echoes of a Stretched Egg
Speedy stars
The Particle Zoo
Plants
Surprise Visitor
Nature's Alphabet
Springing forward
Reptiles
Snakes
Pythons
Iguanas
Space and Astronomy
Evidence of a Wet Mars
Burst Busters
Unveiling Titan
Technology and Engineering
Sugar Power for Cell Phones
Morphing a Wing to Save Fuel
Machine Copy
The Parts of Speech
What is a Noun
Pronouns
Countable and Uncountable Nouns
Transportation
Ready, unplug, drive
Charged cars that would charge
Seen on the Science Fair Scene
Weather
Earth's Poles in Peril
A Dire Shortage of Water
The Best Defense Is a Good Snow Fence
Add your Article

Not Slippery When Wet

A gecko has amazingly sticky feet (see "How a Gecko Defies Gravity"). In fact, if you pull hard enough on a gecko stuck to a glass plate, you might break the plate. A tree frog's foot doesn't have so powerful a grip, but it still must allow the frog to climb wet, slippery leaves—sometimes while the frog is upside down. Now, scientists have figured out how a tree frog manages to keep its grip. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A tree frog's foot is covered with a wet film. This layer of fluid led scientists to think that the frog's wet toe pads cling to a surface by the same force that makes a damp piece of paper stick to a window. But this didn't explain how a frog could walk on something wet, such as a rock in a stream or a branch in the rain. To answer this question, Walter Federle of the University of Cambridge in England and a team of scientists took pictures of tree frogs walking on glass. By magnifying the pictures and making measurements, the researchers found that the wet layer on a frog's foot is very thin. In some places, there's no film at all. It turns out that a tree frog has tiny bumps on the bottom of its feet, almost like soccer cleats. Because the wet film is so thin, these bumps poke through and stay dry, giving a tree frog better traction when climbing slippery surfaces. A tree frog's toe pads also have little channels along which fluid can flow. On wet surfaces, the channels funnel away extra fluid. On dry or uneven surfaces, they bring additional fluid to the pads, allowing the frog to cling more tightly or even hang upside down. A gecko's feet have inspired a new type of adhesive tape (see "Sticking Around with Gecko Tape"). If engineers can figure out how to imitate a tree frog's foot, we might someday have car tires that stick to the road even when the road's wet.—E. Jaffe

Not Slippery When Wet
Not Slippery When Wet








Designed and Powered by HBJamaica.com™