Agriculture
New Gene Fights Potato Blight
Springing forward
Protecting Cows—and People—from a Deadly Disease
Amphibians
Salamanders
Toads
Poison Dart Frogs
Animals
Color-Changing Bugs
Ant Invasions Change the Rules
Tool Use Comes Naturally to Crows
Behavior
Seeing red means danger ahead
Double take
Making Sense of Scents
Birds
Doves
Birds We Eat
Dodos
Chemistry and Materials
Pencil Thin
Big Machine Reveals Small Worlds
Silk’s superpowers
Computers
Toxic Dirt + Avian Flu = Science Fair Success
Galaxies far, far, far away
Play for Science
Dinosaurs and Fossils
Supersight for a Dino King
Mini T. rex
Watery Fate for Nature's Gliders
E Learning Jamaica
2014 GSAT Results for Jamaican Kids
Results of GSAT are in schools this week
E Learning in Jamaica WIN PRIZES and try our Fun Animated Games
Earth
Meteorites may have sparked life on Earth
Farms sprout in cities
Watering the Air
Environment
Sea Otters, Kelp, and Killer Whales
Nanosponges Soak Up Pollutants
Hazy with a Chance of Sunshine
Finding the Past
Little People Cause Big Surprise
A Plankhouse Past
The Puzzle of Ancient Mariners
Fish
Marlin
Hagfish
Lungfish
Food and Nutrition
Yummy bugs
Moving Good Fats from Fish to Mice
Strong Bones for Life
GSAT English Rules
Order of Adjectives
Pronouns
Capitalization Rules
GSAT Exam Preparation Jamaica
10 Common Mistakes When Preparing for the GSAT Math Test
Tarrant High overcoming the odds
Preparing for the GSAT Exam
GSAT Exams Jamaica Scholarships
2014 GSAT Results for Jamaican Kids
42,000 students will sit for the GSAT Exam in two weeks
Results of GSAT are in schools this week
GSAT Mathematics
Math Naturals
10 Common Mistakes When Preparing for the GSAT Math Test
Monkeys Count
Human Body
Spit Power
Running with Sneaker Science
Opening a Channel for Tasting Salt
Invertebrates
Praying Mantis
Horseshoe Crabs
Crustaceans
Mammals
Scottish Folds
Pekingese
Rats
Parents
What Not to Say to Emerging Readers
Expert report highlights the importance to parents of reading to children!
Children and Media
Physics
Powering Ball Lightning
Speedy stars
Spin, Splat, and Scramble
Plants
Assembling the Tree of Life
Getting the dirt on carbon
Flower family knows its roots
Reptiles
Caimans
Anacondas
Tortoises
Space and Astronomy
Dark Galaxy
Planet Hunters Nab Three More
Holes in Martian moon mystery
Technology and Engineering
Roll-Up Computer Monitors to Go
Space Umbrellas to Shield Earth
Switchable Lenses Improve Vision
The Parts of Speech
Problems with Prepositions
What is a Verb?
What is a Preposition?
Transportation
Are Propellers Fin-ished?
Where rivers run uphill
Morphing a Wing to Save Fuel
Weather
Catching Some Rays
Polar Ice Feels the Heat
Antarctica warms, which threatens penguins
Add your Article

Cold, colder and coldest ice

Most people know what happens at 0º Celsius (or 32 º Fahrenheit): Water freezes. When the temperature outside is below freezing, for example, a rain storm may become a blizzard of snow. A glass of water left in the freezer eventually becomes a glass of ice. The freezing point of water may seem like a simple fact, but the story of how water freezes is a little more complicated. In water at the freezing temperature, ice crystals usually form around a dust particle in the water. Without dust particles, the temperature can get even lower before the water turns to ice. In the laboratory, for example, researchers have shown that it’s possible to cool water down to -40º C — without producing a single ice cube. This “supercooled” water has many uses, such as playing an important part in helping frogs and fish survive low temperatures.In a more recent study, scientists showed how the temperature at which water freezes can be changed using electric charges. In this experiment, water exposed to a positive charge froze at higher temperatures than water exposed to a negative charge. “We are very, very surprised by this result,” Igor Lubomirsky told Science News. Lubomirsky, who worked on the experiment, works at the Weizmann Institute of Science in Rehovot, Israel.Charge depends on tiny particles called electrons and protons. These particles, together with particles called neutrons, make up atoms, which are the building blocks of all matter. An electron is a negative charge and a proton is a positive charge. In atoms with the same number of protons as electrons, the positive and negative charges cancel each other out and make the atom act like it has no charge. Water already has its own kind of charge. A water molecule is made of one oxygen atom and two hydrogen atoms, and when these atoms get together they make a shape like Mickey Mouse’s head, with the two hydrogen atoms being the ears. The atoms bond together by sharing their electrons. But the oxygen atom tends to hog the electrons, pulling them more toward itself. As a result, the side with the oxygen atom has a bit more negative charge. On the side with two hydrogen atoms, the protons aren’t balanced out as well by electrons, so that side has a bit of positive charge. Because of this imbalance, scientists have long suspected that forces due to electric charges could change the freezing point of water. But this idea has been hard to test and harder to verify. Earlier experiments looked at water freezing on metal, which is a good material to use because it holds electric charges, but water can freeze on metal with or without a charge. Lubomirsky and his colleagues got around this problem by separating the water and the charged metal with a special type of crystal that could generate electric fields when heated or cooled. In the experiment, the scientists placed four crystal discs inside four copper cylinders, then lowered the temperature of the room. As the temperature dropped, water droplets formed on the crystals. One disc was designed to give the water a positive charge; one a negative charge; and two gave no charge at all to the water. The water droplets on the crystal with no electric charge froze at -12.5º C on average. Those on a crystal with a positive charge froze at a higher temperature of -7º C. And on the crystal with a negative charge, the water froze at -18º C — the coldest of all. Lubomirsky told Science News he was “delighted” with his experiment, but the hard work is only beginning. They’ve taken the first step — observation — but now they have to explore the deep science of what is causing what they observed. These scientists have managed to show that electric charges affect the freezing temperature of water. But they don’t yet know why. POWER WORDS electron A stable, negatively charged subatomic particle. proton A stable, positively charged subatomic particle electric charge The property of matter responsible for all electric phenomena, in particular for the force of the electromagnetic interaction, occurring in two forms arbitrarily designated negative and positive. electric field A region of space characterized by the existence of a force generated by electric charge.

Cold, colder and coldest ice
Cold, colder and coldest ice








Designed and Powered by HBJamaica.com™